科百科
当前位置: 首页 科技资讯

卷积神经网络基本原理(一文入门卷积神经网络)

时间:2023-05-27 作者: 小编 阅读量: 1 栏目名: 科技资讯

一文入门卷积神经网络摘要:CNN基础知识介绍及TensorFlow具体实现,对于初学者或者求职者而言是一份不可多得的资料定义:简而言之,卷积神经网络(ConvolutionalNeuralNetworks)是一种深度学习。

摘要: CNN基础知识介绍及TensorFlow具体实现,对于初学者或者求职者而言是一份不可多得的资料。

定义:

简而言之,卷积神经网络(Convolutional Neural Networks)是一种深度学习模型或类似于人工神经网络的多层感知器,常用来分析视觉图像。卷积神经网络的创始人是着名的计算机科学家Yann LeCun,目前在Facebook工作,他是第一个通过卷积神经网络在MNIST数据集上解决手写数字问题的人。

Yann LeCunn

卷积神经网络的出现是受到了生物处理过程的启发,因为神经元之间的连接模式类似于动物的视觉皮层组织。

人脑的视觉结构

个体皮层神经元仅在被称为感受野的视野受限区域中对刺激作出反应,不同神经元的感受野部分重叠,使得它们能够覆盖整个视野。

计算机视觉与人类视觉

正如上图所示,我们在谈论任何类型的神经网络时,都不可能不提及一点神经科学以及人体(特别是大脑)及其功能相关的知识,这些知识成为创建各种深度学习模型的主要灵感的来源。

卷积神经网络的架构:

卷积神经网络架构

如上图所示,卷积神经网络架构与常规人工神经网络架构非常相似,特别是在网络的最后一层,即全连接。此外,还注意到卷积神经网络能够接受多个特征图作为输入,而不是向量。

下面让我们探索构成卷积神经网络的基本构件及相关的数学运算过程,并根据在训练过程中学到的特征和属性对图像进行可视化和分类。

输入层|Input Layer:

输入层主要是n×m×3 RGB图像,这不同于人工神经网络,人工神经网络的输入是n×1维的矢量。

RGB图像

卷积层|Convolution Layer:

在卷积层中,计算输入图像的区域和滤波器的权重矩阵之间的点积,并将其结果作为该层的输出。滤波器将滑过整个图像,重复相同的点积运算。这里注意两件事:

  • 滤波器必须具有与输入图像相同数量的通道;
  • 网络越深,使用的滤波器就越多;拥有的滤波器越多,获得的边缘和特征检测就越多;

前向卷积运算

卷积层输出的尺寸:

输出宽度:

输出高度:

其中:

  • W :输入图像的宽度
  • H :输入图像的高度
  • Fw :滤波器或内核的宽度
  • Fh :滤波器的高度
  • P :填充
  • S :移动步幅

卷积层输出的通道数等于卷积操作期间使用的滤波器的个数。

为什么选择卷积?

有时候可能会问自己,为什么要首先使用卷积操作?为什么不从一开始就展开输入图像矩阵?在这里给出答案,如果这样做,我们最终会得到大量需要训练的参数,而且大多数人都没有能够以最快的方式解决计算成本高昂任务的能力。此外,由于卷积神经网络具有的参数会更少,因此就可以避免出现过拟合现象。

池化层|Pooling Layer:

目前,有两种广泛使用的池化操作——平均池化(average pooling)和最大池化(max pooling),其中最大池化是两者中使用最多的一个操作,其效果一般要优于平均池化。池化层用于在卷积神经网络上减小特征空间维度,但不会减小深度。当使用最大池化层时,采用输入区域的最大数量,而当使用平均池化时,采用输入区域的平均值。

最大池化

为什么要池化?

池化层的核心目标之一是提供空间方差,这意味着你或机器将能够将对象识别出来,即使它的外观以某种方式发生改变,更多关于池化层的内容可以查看Yann LeCunn的文章。

非线性层|Non-linearity Layer:

在非线性层中,一般使用ReLU激活函数,而不是使用传统的Sigmoid或Tan-H激活函数。对于输入图像中的每个负值,ReLU激活函数都返回0值,而对于输入图像中的每个正值,它返回相同的值(有关激活函数的更深入说明,请查看这篇文章)。

ReLU激活函数

全连接层}Fully Connected Layer:

在全连接层中,我们将最后一个卷积层的输出展平,并将当前层的每个节点与下一层的另一个节点连接起来。全连接层只是人工神经网络的另一种说法,如下图所示。全连接层中的操作与一般的人工神经网络中的操作完全相同:

卷积层展开

全连接层

上面讨论的层和操作都是每个卷积神经网络的核心组件,现在已经讨论了卷积神经网络在前向传播中经历的操作,下面让我们跳转到卷积神经网络在反向传播中经历的操作。

反向传播|Backpropagation:

全连接层:

在全连接层中,反向传播与任何常规人工神经网络完全相同,在反向传播中(使用梯度下降作为优化算法),使用损失函数的偏导数即损失函数关于权重的导数来更新参数,其中我们将损失函数的导数与激活输出相乘,激活输出的导数与非激活输出相乘,导数为未激活的输出与权重相对应。

数学表达式如下:

反向传播说明图

在计算梯度之后,我们从初始权重中减去它以得到新的优化:

其中:

  • θi1 :优化的权重
  • θi:初始权重
  • α :学习率
  • ∇J(θi):损失函数的梯度

梯度下降

在下面的动态图中,是将梯度下降应用于线性回归的结果。从图中可以清楚地看到代价函数越小,线性模型越适合数据。

梯度下降应用于线性回归

此外,请注意一点,应该谨慎地选择学习率的取值,学习率太高可能会导致梯度超过目标最小值, 学习率太低可能导致网络模型收敛速度变慢。

小学习率与大学习率

在所有优化任务中,无论是在物理学、经济学还是计算机科学中,偏导数都被大量使用。偏导数主要用于计算因变量f(x, y, z)相对于其独立变量之一的变化率。例如,假设你拥有一个公司的股份,后者的股票会根据多种因素(证券、政治、销售收入等)上涨或下跌,在这种情况下通过偏导数,你会计算多少股票受到影响而其他因素保持不变,股票发生变化,则公司的价格也会发生变化。

池化层|Pooling Layer:

在最大池化特征图层中,梯度仅通过最大值反向传播,因此稍微更改它们并不会影响输出。在此过程中,我们将最大池化操作之前的最大值替换为1,并将所有非最大值设置为零,然后使用链式法则将渐变量乘以先前量以得到新的参数值。

池化层反向传播

与最大池化层不同,在平均池化层中,梯度是通过所有的输入(在平均合并之前)进行传播。

卷积层|Convolution Layer:

你可能现在问自己,如果卷积层的前向传播是卷积,那么它的反向传播是什么?幸运的是,它的向后传播也是一个卷积,所以你不必担心学习新的难以掌握的数学运算。

卷积层反向传播

其中:

  • ∂hij:损失函数的导数

简而言之,上图表明了反向传播是如何在卷积层中起作用的。现在假设你已经对卷积神经网络有了深刻的理论理解,下面让我们用TensorFlow构建的第一个卷积神经网络吧。

TensorFlow实现卷积神经网络:

什么是Tensorflow?

TensorFlow是一个使用数据流图进行数值计算的开源软件库。它最初由谷歌机器智能研究机构谷歌大脑团队开发,用于机器学习和深度神经网络的研究。

什么是张量?

张量是一个有组织的多维数组,张量的顺序是表示它所需数组的维数。

张量的类型

什么是计算图?

计算图是计算代数中的一个基础处理方法,在机器学习中的神经网络和其他模型推导算法和软件包方面非常富有成效。计算图中的基本思想是表达一些模型——例如前馈神经网络,计算图作为表示计算步骤序列的一个有向图。序列中的每个步骤对应于计算图中的顶点, 每个步骤对应一个简单的操作,每个操作接受一些输入并根据其输入产生一些输出。

在下面的图示中,我们有两个输入w1 = x和w2 = y,这个输入将流经图形,其中图形中的每个节点都是数学运算,为我们提供以下输出:

  • w3 = cos(x),余弦三角函数操作
  • w4 = sin(x),正弦三角函数操作
  • w5 = w3∙w4,乘法操作
  • w6 = w1 / w2,除法操作
  • w7 = w5w6,加法操作

现在我们了解了什么是计算图,下面让我们TensorFlow中构建自己的计算图吧。

代码:

# Import the deep learning libraryimport tensorflow as tf# Define our compuational graph W1 = tf.constant(5.0, name = "x")W2 = tf.constant(3.0, name = "y")W3 = tf.cos(W1, name = "cos")W4 = tf.sin(W2, name = "sin")W5 = tf.multiply(W3, W4, name = "mult")W6 = tf.divide(W1, W2, name = "div")W7 = tf.add(W5, W6, name = "add")# Open the sessionwith tf.Session() as sess: cos = sess.run(W3) sin = sess.run(W4) mult = sess.run(W5) div = sess.run(W6) add = sess.run(W7)# Before running TensorBoard, make sure you have generated summary data in a log directory by creating a summary writer writer = tf.summary.FileWriter("./Desktop/ComputationGraph", sess.graph)# Once you have event files, run TensorBoard and provide the log directory # Command: tensorboard --logdir="path/to/logs"

使用Tensorboard进行可视化:

什么是Tensorboard?

TensorBoard是一套用于检查和理解TensorFlow运行和图形的Web应用程序,这也是Google的TensorFlow比Facebook的Pytorch最大的优势之一。

上面的代码在Tensorboard中进行可视化

在卷积神经网络、TensorFlow和TensorBoard有了深刻的理解,下面让我们一起构建我们的第一个使用MNIST数据集识别手写数字的卷积神经网络。

MNIST数据集

我们的卷积神经网络模型将似于LeNet-5架构,由卷积层、最大池化和非线性操作层。

卷积神经网络三维仿真

代码:

# Import the deep learning libraryimport tensorflow as tfimport time# Import the MNIST datasetfrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets("/tmp/data/", one_hot=True)# Network inputs and outputs# The network's input is a 28×28 dimensional inputn = 28m = 28num_input = n * m # MNIST data input num_classes = 10 # MNIST total classes (0-9 digits)# tf Graph inputX = tf.placeholder(tf.float32, [None, num_input])Y = tf.placeholder(tf.float32, [None, num_classes])# Storing the parameters of our LeNET-5 inspired Convolutional Neural Networkweights = { "W_ij": tf.Variable(tf.random_normal([5, 5, 1, 32])), "W_jk": tf.Variable(tf.random_normal([5, 5, 32, 64])), "W_kl": tf.Variable(tf.random_normal([7 * 7 * 64, 1024])), "W_lm": tf.Variable(tf.random_normal([1024, num_classes])) }biases = { "b_ij": tf.Variable(tf.random_normal([32])), "b_jk": tf.Variable(tf.random_normal([64])), "b_kl": tf.Variable(tf.random_normal([1024])), "b_lm": tf.Variable(tf.random_normal([num_classes])) }# The hyper-parameters of our Convolutional Neural Networklearning_rate = 1e-3num_steps = 500batch_size = 128display_step = 10def ConvolutionLayer(x, W, b, strides=1): # Convolution Layer x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME') x = tf.nn.bias_add(x, b) return xdef ReLU(x): # ReLU activation function return tf.nn.relu(x)def PoolingLayer(x, k=2, strides=2): # Max Pooling layer return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, strides, strides, 1], padding='SAME')def Softmax(x): # Softmax activation function for the CNN's final output return tf.nn.softmax(x)# Create modeldef ConvolutionalNeuralNetwork(x, weights, biases): # MNIST data input is a 1-D row vector of 784 features (28×28 pixels) # Reshape to match picture format [Height x Width x Channel] # Tensor input become 4-D: [Batch Size, Height, Width, Channel] x = tf.reshape(x, shape=[-1, 28, 28, 1]) # Convolution Layer Conv1 = ConvolutionLayer(x, weights["W_ij"], biases["b_ij"]) # Non-Linearity ReLU1 = ReLU(Conv1) # Max Pooling (down-sampling) Pool1 = PoolingLayer(ReLU1, k=2) # Convolution Layer Conv2 = ConvolutionLayer(Pool1, weights["W_jk"], biases["b_jk"]) # Non-Linearity ReLU2 = ReLU(Conv2) # Max Pooling (down-sampling) Pool2 = PoolingLayer(ReLU2, k=2)# Fully connected layer # Reshape conv2 output to fit fully connected layer input FC = tf.reshape(Pool2, [-1, weights["W_kl"].get_shape().as_list()[0]]) FC = tf.add(tf.matmul(FC, weights["W_kl"]), biases["b_kl"]) FC = ReLU(FC) # Output, class prediction output = tf.add(tf.matmul(FC, weights["W_lm"]), biases["b_lm"])return output# Construct modellogits = ConvolutionalNeuralNetwork(X, weights, biases)prediction = Softmax(logits)# Softamx cross entropy loss functionloss_function = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits( logits=logits, labels=Y))# Optimization using the Adam Gradient Descent optimizeroptimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)training_process = optimizer.minimize(loss_function)# Evaluate modelcorrect_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))# recording how the loss functio varies over time during trainingcost = tf.summary.scalar("cost", loss_function)training_accuracy = tf.summary.scalar("accuracy", accuracy)train_summary_op = tf.summary.merge([cost,training_accuracy])train_writer = tf.summary.FileWriter("./Desktop/logs", graph=tf.get_default_graph())# Initialize the variables (i.e. assign their default value)init = tf.global_variables_initializer()# Start trainingwith tf.Session() as sess: # Run the initializer sess.run(init)start_time = time.time()for step in range(1, num_steps 1):batch_x, batch_y = mnist.train.next_batch(batch_size) # Run optimization op (backprop) sess.run(training_process, feed_dict={X: batch_x, Y: batch_y})if step % display_step == 0 or step == 1: # Calculate batch loss and accuracy loss, acc, summary = sess.run([loss_function, accuracy, train_summary_op], feed_dict={X: batch_x, Y: batch_y}) train_writer.add_summary(summary, step)print("Step "str(step)", Minibatch Loss= "\ "{:.4f}".format(loss)", Training Accuracy= "\ "{:.3f}".format(acc))end_time = time.time()print("Time duration: "str(int(end_time-start_time))" seconds") print("Optimization Finished!")# Calculate accuracy for 256 MNIST test images print("Testing Accuracy:", \ sess.run(accuracy, feed_dict={X: mnist.test.images[:256], Y: mnist.test.labels[:256]}))

上面的代码显得有些冗长,但如果一段一段的对其进行分解,读起来不是很难理解。

运行完该程序,对应结果应如下所示:

Step 1, Minibatch Loss= 74470.4844, Training Accuracy= 0.117Step 10, Minibatch Loss= 20529.4141, Training Accuracy= 0.250Step 20, Minibatch Loss= 14074.7539, Training Accuracy= 0.531Step 30, Minibatch Loss= 7168.9839, Training Accuracy= 0.586Step 40, Minibatch Loss= 4781.1060, Training Accuracy= 0.703Step 50, Minibatch Loss= 3281.0979, Training Accuracy= 0.766Step 60, Minibatch Loss= 2701.2451, Training Accuracy= 0.781Step 70, Minibatch Loss= 2478.7153, Training Accuracy= 0.773Step 80, Minibatch Loss= 2312.8320, Training Accuracy= 0.820Step 90, Minibatch Loss= 2143.0774, Training Accuracy= 0.852Step 100, Minibatch Loss= 1373.9169, Training Accuracy= 0.852Step 110, Minibatch Loss= 1852.9535, Training Accuracy= 0.852Step 120, Minibatch Loss= 1845.3500, Training Accuracy= 0.891Step 130, Minibatch Loss= 1677.2566, Training Accuracy= 0.844Step 140, Minibatch Loss= 1683.3661, Training Accuracy= 0.875Step 150, Minibatch Loss= 1859.3821, Training Accuracy= 0.836Step 160, Minibatch Loss= 1495.4796, Training Accuracy= 0.859Step 170, Minibatch Loss= 609.3800, Training Accuracy= 0.914Step 180, Minibatch Loss= 1376.5054, Training Accuracy= 0.891Step 190, Minibatch Loss= 1085.0363, Training Accuracy= 0.891Step 200, Minibatch Loss= 1129.7145, Training Accuracy= 0.914Step 210, Minibatch Loss= 1488.5452, Training Accuracy= 0.906Step 220, Minibatch Loss= 584.5027, Training Accuracy= 0.930Step 230, Minibatch Loss= 619.9744, Training Accuracy= 0.914Step 240, Minibatch Loss= 1575.8933, Training Accuracy= 0.891Step 250, Minibatch Loss= 1558.5853, Training Accuracy= 0.891Step 260, Minibatch Loss= 375.0371, Training Accuracy= 0.922Step 270, Minibatch Loss= 1568.0758, Training Accuracy= 0.859Step 280, Minibatch Loss= 1172.9205, Training Accuracy= 0.914Step 290, Minibatch Loss= 1023.5415, Training Accuracy= 0.914Step 300, Minibatch Loss= 475.9756, Training Accuracy= 0.945Step 310, Minibatch Loss= 488.8930, Training Accuracy= 0.961Step 320, Minibatch Loss= 1105.7720, Training Accuracy= 0.914Step 330, Minibatch Loss= 1111.8589, Training Accuracy= 0.906Step 340, Minibatch Loss= 842.7805, Training Accuracy= 0.930Step 350, Minibatch Loss= 1514.0153, Training Accuracy= 0.914Step 360, Minibatch Loss= 1722.1812, Training Accuracy= 0.875Step 370, Minibatch Loss= 681.6041, Training Accuracy= 0.891Step 380, Minibatch Loss= 902.8599, Training Accuracy= 0.930Step 390, Minibatch Loss= 714.1541, Training Accuracy= 0.930Step 400, Minibatch Loss= 1654.8883, Training Accuracy= 0.914Step 410, Minibatch Loss= 696.6915, Training Accuracy= 0.906Step 420, Minibatch Loss= 536.7183, Training Accuracy= 0.914Step 430, Minibatch Loss= 1405.9148, Training Accuracy= 0.891Step 440, Minibatch Loss= 199.4781, Training Accuracy= 0.953Step 450, Minibatch Loss= 438.3784, Training Accuracy= 0.938Step 460, Minibatch Loss= 409.6419, Training Accuracy= 0.969Step 470, Minibatch Loss= 503.1216, Training Accuracy= 0.930Step 480, Minibatch Loss= 482.6476, Training Accuracy= 0.922Step 490, Minibatch Loss= 767.3893, Training Accuracy= 0.922Step 500, Minibatch Loss= 626.8249, Training Accuracy= 0.930Time duration: 657 secondsOptimization Finished!Testing Accuracy: 0.9453125

综上,们刚刚完成了第一个卷积神经网络的构建,正如在上面的结果中所看到的那样,从第一步到最后一步,模型的准确性已经得到很大的提升,但我们的卷积神经网络还有较大的改进空间。

现在让我们在Tensorboard中可视化构建的卷积神经网络模型:

可视化卷积神经网络

准确性和损失评估

结论:

卷积神经网络是一个强大的深度学习模型,应用广泛,性能优异。卷积神经网络的使用只会随着数据变大和问题变得更加复杂变得更加具有挑战性。

注意:

可以在以下位置找到本文的Jupyter笔记本:

  • https://github.com/AegeusZerium/DeepLearning/blob/master/Deep Learning/Demystifying Convolutional Neural Networks.ipynb

参考文献:

  • https://en.wikipedia.org/wiki/Convolutional_neural_network
  • https://en.wikipedia.org/wiki/Yann_LeCun
  • * http://yann.lecun.com/exdb/mnist/
  • https://opensource.com/article/17/11/intro-tensorflow
  • https://en.wikipedia.org/wiki/Tensor
  • http://www.cs.columbia.edu/~mcollins/ff2.pdf
  • https://github.com/tensorflow/tensorboard
  • http://yann.lecun.com/exdb/lenet/

作者信息

Lightning Blade,机器学习热爱者

本文由阿里云云栖社区组织翻译。

文章原标题《Demystifying Convolutional Neural Networks》,译者:海棠,审校:Uncle_LLD。

    推荐阅读
  • 武林外传白展堂被冤枉第几集(武林外传删减剧情曝光)

    观众们则是在第四面墙的位置,观看这出情景喜剧。于是,白展堂凭借自己的身手,挟持住导演,要其拿出解药,治好同福众人的疯病。甚至直言要把沙溢辞了,让其来演白展堂。白展堂则不耐烦,掐住导演,问其为何让李大嘴怀孕。此人认为,对付白展堂这种精神病人,最好是按照他的思路走下去。在拍戏时,沙溢明显心不在焉,被导演怒斥。只有死亡,才能反抗所谓的剧本。连扇几巴掌后,白展堂放弃自杀的念头,这才恢复了对自己身体的控制。

  • 女人取什么名字财运好(女孩招财的名字推荐)

    下面内容希望能帮助到你,我们来一起看看吧!金媛“金”字既能作为姓氏也可以用作名字里,代表着高贵、财运好的意思,而“媛”常用作女孩名字里指为温柔、有气质的意思。晓元“晓”字常指为晓得、明白的意思,后来用作人名为美丽、大方的意思,而“元”在古时经常是元宝的意思,代表着金钱。

  • 吃什么头发长得快又密 吃什么头发长得快又密又多

    补充植物蛋白脱发者的头发中氮氨酸、胱氨酸明显减少。因此,患者应多吃大豆、黑芝麻、玉米等富含蛋氨酸、胱氨酸的食品。所以要少吃肝类、肉类等食品,因这些食品中的酸性物质容易引起酸毒素过多。蔬菜和水果是碱性食物,能中和酸性毒素,可以适当多吃。补碘女性头发的光泽与甲状腺的作用有关,补碘能增强甲状腺的功能,有利于头发健美。脱发女性可多吃海带、紫菜、牡蛎等食品。

  • 内马尔跟姆巴佩为什么闹掰了(姆巴佩诚恳发言引热议)

    关于姆巴佩和内马尔之间的矛盾,从上赛季就关注大巴黎的球迷应该都明白。而到了本赛季姆巴佩获得了顶级合约成为了大巴黎老大之后,更是公开希望俱乐部能够清洗掉内马尔。至少在这个赛季下半段,姆巴佩还是想要好好的和内马尔合作搭档,两人一起带领大巴黎在欧冠上取得好成绩。但前提是在拜仁的第二轮欧冠比赛中两人需要及时复出带队取胜。

  • 防溺水条幅内容(防溺水条幅标语)

    下面更多详细答案一起来看看吧!防溺水条幅内容严密防范,坚决遏制学生溺水事故发生。强化教育,增强青少年儿童的安全意识。加强领导,切实落实预防溺水安全措施。生命只有一次,安全伴君一生。生命仅一次,水火无情谊。强化安全教育,防止溺水事件发生。珍爱生命,坚决不下水游泳。关爱生命旅程,预防溺水,注意交通安全。如果你想变成死鱼一条,就请在此处下水。

  • 女儿哭着不想上幼儿园(孩子哭着说不想去幼儿园)

    鼓励学生说出在学校遇到的不开心的事,并及时给学生做心理疏导,如果学生在学校被欺负,学生家长要想办法让他们表达出来,这样学生家长才能知道如何疏导学生,避免学生以后对上学产生厌烦的心理。如果发现学生不适合这所学校,及时为学生更换学校,这种事情学生家长最好不要犹豫,换一个环境,给学生带来的伤害会更小。

  • 成为产品经理之前的那些事(产品经理成长的)

    而对应的成本线则是“交付可用产品”。如果我们把产品质量分为“可用、好用、易用”,那“可用”就是最低要求。所以,满足“可用”要求的产品,至少要保证合理的流程设计、严谨的信息架构、满足基本体验的交互设计以及完整的功能结构。

  • 张翰和古力娜扎一路坎坷(古力娜扎张翰分手)

    就像当年以国外街头一吻高调宣布恋情一样,古力娜扎和张翰今天由双方工作室出面,宣布已于今年10月中旬和平分手。古力娜扎和张翰作为事业正处于上升期的男女明星,双方各自对自己的事业有追求,今年,二人皆在娱乐圈交出了不错的成绩单。对于二人的决定,古力娜扎的粉丝们率先表态:艺人,只是娜扎的职业,并不是她人生的全部。

  • 亚马逊品牌备案需要什么(关于亚马逊品牌备案相关卖家常见问题答疑)

    关于亚马逊品牌备案相关卖家常见问题答疑最近有不少卖家在询问关于品牌备案相关的问题,我们今天就整理了卖家关心的关于品牌备案的相关问题那么卖家问到的问题是什么呢?情况分析:卖家的名字是A,拥有品牌B1,B2,两个品牌,都是用法人名字进行注册的。

  • 桃胶泡多久才能煮 桃胶泡多久才能煮熟

    桃胶泡多久才能煮建议最少泡12个小时最好。女性吃桃胶有什么好处美容养颜桃胶中含有大量的植物胶原蛋白以及维生素,这些物质具有很好的防衰老作用,适量食用可以是人体皮肤细嫩有光泽,女性食用之后具有一定美容养颜的作用。降血糖桃胶中含有大量的不饱和脂肪酸、多糖等营养成分,其中不饱和脂肪酸与多糖中的单糖具有很好的控制人体血糖的作用,女性适量食用具有一定降血糖作用。